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A D I F F E R E N T I A L  M O D E L  OF P L A S T I C A L L Y  

D E F O R M E D  V I S C O E L A S T I C  M A T E R I A L  

A. L. Svistkov UDC 539.214; 539.374 

In the present paper a model of a plastically deformed viscoelastic material is constructed that takes 
into account the following features of the material's behavior: 1) elastic strains reach large values; 2) the free 
energy of the material cannot be expressed in explicit form in terms of the first, second, and third invariants 
of the Finger or Cauchy-Green strain measure; and 3) after removal of external loads and completion of 
relaxation processes, the material must enter an unloaded state, no matter what inhomogeneous stress field 
exists in the medium. 

Such a behavior is typical of unstitched polymers in a highly elastic state. The free energy of the 
polymers is often expressed in terms of a function of principal elongations, which is difficult to represent by 
an analytical dependence on strain invariants [1-3]. 

The relaxation processes in these materials have been described by differential (e.g., [4-6]) and integral 
[7-9] models. We describe the relaxation processes using internal parameters. Taking account of the latter in 
the expression of free energy by means of a quadratic form, one can construct a reasonable mathematical 
model. The degree of the medium's elastic and plastic deformation is quantitatively determined by the 
corresponding tensors. Various methods of decomposition of the measure of complete strain into elastic and 
plastic components [10-17] are known. We use the Lie decomposition [16], which is determined with accuracy 
to plastic rotation [18]. It is suggested to determine the tensor characteristic of the plastic-strain rate by 
analyzing the rates of changes in the principM elastic elongations. The equation of plastic flow is formulated 
without using the objective derivative. All expressions and equalities are written in coordinates that are 
convenient for solving problems by the modified Lagrange method [19]. 

1. N o t a t i o n .  Let us use lower-case letters for scalar quantities, semiboldface small letter for vector 
characteristics, and upper-case letters for second-order tensor quantities. 

The symbols to, t, and t ,  designate the initial, current, and reference (chosen arbitrarily) times; to 
t, < t. The term "reference" is used for time t, ,  because all determining equations are formulated in the r, 
coordinates of the points of the medium at time t,. The radius vectors of these points at the initial to and 
current t times are denoted by r0 and r, and the position of the points in an unloaded state of equilibrium is 
denoted by vector r~. In other words, the position of continuum points is described by the radius vector r~ 
if the material in a current state is instantly unloaded, and all transient processes are completed. 

Below the following tensors are used: 

0 r~( t , r , )  0 r ( t , r , )  Q ~  _ Or( t ,  ra)  QA = QR = 
0ra ' Or, ' Or, 

We shall need a unit tensor E and the position-gradient operators 

0 0 
V . . . .  eiox i . . . ,  • . . . . .  eioxi, . . . ,  

where r = x ie , ;  r,  = xi, ei; and ei are the basis vectors of the Cartesian coordinate system. Below, in 
mathematical expressions, the subscript in angle brackets near the closing parenthesis (...)(i) denotes the 
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absence of summation over it; the symbol I~ is the third invariant of the tensor Qt n " Q R :  

/; = 6(q~. QR). 
2. Der iva t ion  of  t h e  R e l a t i o n  Be tween  the  R a t e  of Pr inc ipa l  E las t i c  E l o n g a t i o n s  and  the  

G e o m e t r i c  Tensor  C h a r a c t e r i s t i c s  of  M e d i u m .  We consider the Cauchy-Green elastic-strain measure 

G =  ( 0 r ' ~  t ( O r )  
\ a r a ]  " ~r~ = q t ' Q a "  (2.1) 

Let the normalized vectors gi be its eigenvectors, and the squares of quantities Ai the eigenvalues. The rotation 
tensor O relates the three orthonormalized basis vectors of the Cartesian coordinate system ei to the three 
orthonormalized vectors gi: 

g i  = O �9 e l .  

The Cauchy-Green elastic-strain measure can be written as 

(2.2) 

2 = A~O �9 G = A igig/ e ie i .  O t, (2.3) 

and the squares of elastic elongations along the principal axes A~ can be determined from the formulas 

A 2 = (eiei)(i)..O t. G. O. (2.4) 

Let us consider the time variation of the characteristic Ai. We differentiate equality (2.4) with respect 
to time t. Using the skew-symmetric tensor 

0 0  t 
W = ~ �9 O = - W  t 

Ot 
we write it as 

OAi) o t  O t .  0G Ot 
2Ai --~-/(i> = (e ie i ) (0"(W " �9 G .  O + Ot " O + �9 G .  O .  W t) 

2 . ot 0 G  2 = (eiei)(i)..(W. Ajejej + �9 --~-- 0 + Ajejej- wt). 

The rules of tensor convolution and the skew-symmetry of tensor W allow us to simplify this expression: 

2)~i (i) = (eiei)( i )"ot  " "-~ " O. 

Thus, the problem of determining the law of Ai variations with time reduces to analysis of the dependence of 
the derivative on tensor G. 

Note once more that  our aim is to formulate all equations in the t and r ,  coordinates. This also concerns 
the form of tensor G. This can be realized via the relation 

Or Or 0r,  Or . (Ora~ - I  
q a  = Or--~ = Or---~ " Ora = 0r ,  \ a r , ]  = QR" QA 1- (2.5) 

As a result, the Cauchy-Green elastic-strain measure is given by 

G = (Q~)-I. Q~. QR" Q~I. (2.6) 

One can take a derivative of this expression with respect to time t. Using the formula of inverse tensor 
differentiation 

OQA 1 OQA , 

Ot - qT~" Ot "QA' 

766 



we write the derivative 

0G0~_- (Q%)-I .  0Q~40----~ " (Q~4)-I" Q~" QR" QA' + (Q%)-' " 0----/-0Q~ 

0QR + (q~)-~ q ~  0t Q~I _ (q~)-,. q~. QR- q~' 0qA0t 

- Q R - Q A  1 

~ .  QA 1. (2.7) 

We change the form of the right-hand side of Eq. (2.7) by including the convolution with a unit tensor into 
the second and third terms 

OGot - (Q~4)-" OQ~40-----/- " (Q~4)-" Q~" QR" QA' + ( Q ~ ) - "  (Q~" (QR)- ' ) "  0Q~ot " QR" QA' 

OQR 
+(Q~4)- I"QR" Ot " ( Q R I " Q R ) ' Q A  I - ( Q ~ ) - I ' Q h ' Q R ' Q A  l OQA " Ot "QA" 

Relations (2.5) and (2.6) allow this expression to be written in a shorter form: 

0G 0Q~4 �9 G + Q t .  ( Q ~ ) - I .  0Q~ t OQR. Q-1 OQA 
Ot = _ ( Q ~ ) - I .  0---~ 0----~" Q~ + Q~" 0--~ R " Q~ - G .  0-----~" QAI" (2.8) 

For further analysis we need to define concretely the meaning of tensor Q~. According to the theorem of polar 
decomposition of tensors, the equality Qa = O~ �9 V with positive symmetric tensor V and orthogonal tensor 
O~ is valid. From representations (2.1) and (2.3), the direct form of tensor V can be determined: 

V = A i O . e i e i .  O t. 

Therefore tensor Qa is written as 

Qa = Of .  Aieiei . O t, (2.9) 

where the rotation tensor is 

O I = O~-O.  (2.10) 

It is easy to verify that the same orthogonal tensor results from the representation of the eigenvectors hi of 
the Finger elastic-strain measure F in terms of the basis vectors ei of the Cartesian coordinate system. Note 
that the eigenvalues of tensor F will be the quantities A 2, which, at the same time, are the eigenvalues of 
tensor G: 

F =  ( Or " \Ors]( Or'~t= A2Of'eiei 'Otf; 

hi = O f .  ei. (2.11) 

We substitute the values of tensors Q~ and G (2.3) and (2.9) into Eq. (2.8): 

OG OQtA A~O . eiei . O t . . . .  Ot -- (Q~4)-1 " Ot " + 0 ~ieiei. 0 t] ( q ~ ) - I  0q~.0t OI"  ~je~ej. o t 

OQR 
+ O. Aieiei. Off �9 Of, " QR1 " O f .  Ajejej. O t - A,20 - eiei. O t OQA " Ot "QAI" 

Then, the derivative of the parameter Ai with respect to time (2.5) can be rewritten as 

OAi 1 "'O t" ((Qt4) -1 0Q~4-A~O.e je j )  
0~--  ( '~ieiei)(i)  " Ot 

OQ~ 
+(2~ieiei)( i )"(  A je je j 'O~ ' (QR)- I  " Ot . O f .  Akekek) 

OQR 
+(~-~ieiei)(i)..(Ajejej.Otf. 0----~-Q~ 1 .Of -Akekek)  
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o 

= - - ( ~ A i e i e i ~ / ( i ) . . o t . (  (Q~I,-I" (Ot(OQ~4 +_.~_0QA.QAI). 0 

, , ,  " o ,  

Using relations (2.2), (2.10), and (2. I 1), we obtain the final required expression: 

Here 

(OAi 
(Or 

= (Aieiei)<i>"(O}" DR"  O f  - O t .  DA" O) = (Aihihi)<i>..(DR - 0 ~ .  DA"  0 t )  

= (Aigigi)( i)"(O t �9 DR"  O~ - DA) = (Aihihi ) ( i )"DR - (Aigigi)( i)"DA. (2.12) 

'( ) ( ) DR = ~ ( Q ~ ) - '  (OQ~ (OQn . 1 (Ot + - - ~ - "  QR' DA = ~ ( Q ~ ) - '  (OQ~4 (OQA . 
. m  , . (o_5__ + _ b T _ .  q a '  

It is readily seen that tensors DR and DA are indifferent to motion of the medium as an absolutely 
rigid body. 

3. Basic T h e r m o d y n a m i c  Re la t ions .  Equations describing the processes occurring in materials 
must satisfy the first and second laws of thermodynamics. Moreover, their formulation must be invariant to 
representation in any inertial system. This condition leads to important conclusions [20, 21]. The requirement 
of invariance to the choice of an inertial system of reference is fulfilled only with satisfaction of the equation 
of continuity 

(O 
( I~ /~)  = o, (3.~) 

the law of motion of the medium 

the law of energy conservation 

(o2r �9 
p~-~ - (q~)- l - .  VT = 0, (3.2) 

0 e  * 
p ~-~ - T. .DR - T-.WD + ( q h ) - l . . V q  = 0, (3.3) 

and the thermodynamic inequality 

(Of 00 1 * Q-1 
p - ~ + p s - ~ - T . . D R - T . . W D + ~ V O ,  n "q~<0,  (3.4) 

where p is the material mass in a small element of the medium referred to the volume of this element at time 
t; 0 is the temperature; e, f and s are the mass densities of the internal energy, free energy, and entropy of 
the continuum; T is the tensor of true stresses in the material (the Cauchy stress tensor); q is the heat-flux 
vector; and 

1 ((OQR 
w o  = ~ \ - S V  Q~I _ (Q~) -~ .  ot / 

Laws (3.1)-(3.4) were formulated in the r ,  coordinates (in the reference configuration in Lagrangian 
"coordinates). The free energy is related to the internal energy and entropy by the equality 

f = e - es. (3.5) 

We consider materials whose free-energy density f is a function of the medium's temperature 0, the 
characteristics of its reversible strains Ai, and the parameters ~1, (2, and ~3 that characterize the features of 
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relaxation processes. It is assumed that 

f = f~(0, AI,A2,Aa) + 0.5c(~ + ~2 2 + ~a2), c = c(0) >t O. 

Here c = c(O) is a nonncgative function of the temperature 0; and ~l, ~2, and ~3 are dimensionless quantities. 
In our case, the behavior of the medium depends on the following: 1) the coordinates of the deformed 

element x 1, x 2, and x 3 at current time; 2) the coordinates of the deformed element x~, x~,2 and x,3 from which 
the elastic strains are counted off (these vary with propagation of plastic flow); 3) the relaxation characteristics 
{l, ~2, and ~3 of the current state; and 4) the temperature. The first six quantities and the temperature have 
a clear physical meaning. The parameters ~1, ~2, and ~3 are introduced to construct a physically valid and 
simple (from a mathematical viewpoint) model. 

4. E q u a t i o n  D e s c r i b i n g  t h e  P r o c e s s e s  in the  Ma te r i a l .  Let us consider thermodynamic inequality 
(3.4). The derivative of the free energy with respect to time has the form 

cO f cO f cOO cO f cOAi Of CO~i CO f (:30 CO f CO Ai CO~i 
COt - cOo cOt + cOA-----~ cOt + cO(~ cOt = cO--o cO~ + OA--~ CO-[- + c~, cOt 

Using the notation 

ae aAi; (4.1) 

aid= pc~i, 7/ > 0  (4.2) 
T/ 

and Eq. (2.12), we rewrite thermodynamic inequality (3.4) as 

( Of ) CO~i 1 �9 O0+~r~hihc ' (DR-Oc, 'DA'Ot )+71a 'a - f f [ -T . .DR--T . .WD+-~VO.QRI  q<~0. (4.3) p 

Using the rotation tensor Or, we can express any three orthonormalized vectors ji in terms of the basis 
vectors ei of the Cartesian coordinate system as ji = Ot �9 ei, where the time derivative of the rotation tensor 
Ot is the convolution of this tensor with the skew-symmetric Wt: 

OOt 
- W t  �9 O r .  cOt 

This implies validity of the identity 

3 �9 . (9 
0di)<0-.  (hh)<k> = ( o , .  ekek- = + h h "  Wl)(k) = 0 

and fulfillment of the relation 

i - -  CO i . .  D aid = ~rliJiJi"-ff~ (~kj/cjl,) = crdJiJi"-~ (~kJkjk), (4.4) 

where D/Dt . . .  is an objective derivative of the second-order tensor that satisfies the conditions 

DA COA DA 0 
= A . - - - ,  E - -  - (E-.A) (4.5) A.. Dt COt Dt cOt 

for any symmetric tensor A. Using (4.4), we transform expression (4.3): 

cOO 
p(~o + s) --~ + (ty:hihi + o~jij i) . . (DR-Oa. D A . O  t) 

D 

1 ~ 0 ~< 0. (4.6) - T-.DR - T- .WD + ~ �9 QR 1 �9 q 

Thus, the requirement of agreement of the mathematical model with the first and second thermodynamic laws 
reduces to satisfaction of inequality (4.6). There are many methods for constructing the governing equations 
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of material behavior that  satisfy this inequality. We consider one of the possible and physically reasonable 
systems of equations. 

Let the continuum behavior be determined by the equations 

Of 
s = 00' (4.7) 

T = Te + Td; (4.8) 

Te = a~hihi; (4.9) 

Td = o'~jiji; (4.10) 

q = -r/q(Q%) - I .  ~70; (4.11) 

DU ( 1 ) 
Dt = -r/~U + D -  ~ (D.-E)E , U = ~ijiji; (4.12) 

D = D R - -  O~.  DA. o t ;  (4.13) 

( 1  ) 
DA. = "'Ta T - g (T--E)E , (4.14) 

r /A•0  , r / ~ )  0, r/q >~0, 0 ~ P ~ 1. 

Equality (4.7) expresses the well-known statement of thermodynamics.  The  mass density of the 
medium's entropy s equals the derivative of the mass density of the equilibrium free energy f~ with respect 
to the temperature 0 with opposite sign. 

Expressions (4.8)-(4.10) and relations (4.1) and (4.2) are known in mechanics. The stresses occurring 
in the continuum are the sum of the equilibrium Te and dissipative Td components. The main values of 

i the equilibrium components of stresses ae are uniquely determined by the derivative of the equilibrium 
mass density of the medium's free energy f ,  with respect to the elastic elongations )~i, and the relaxation 
characteristics of the state of the material ~i can be described by parameters that  are proportional to the main 
values a~ of dissipative stresses Td. In this case, the spatial orientation of equilibrium stresses T~ depends 
on the eigenvectors hi of the Finger strain measure F. The spatial orientation of dissipative stresses Td is 
determined by the eigenvectors ji of the relaxation tensor U in which the parameters ~i are the eigenvalues. 

Equality (4.11) rewritten with allowance for the relation between the position-gradient operators in 
actual r and studied r ,  configurations has the form q = -rlqVO and represents the Fourier heat conductivity 
law. 

Relation (4.12) describes relaxation, creep, and viscoelastic processes. It is noteworthy that  the 
parameter r/~ is a nonnegative function of the state parameters of the medium and their t ime derivatives. 
Therefore, in the general case, the relaxation law (4.12) is substantially nonlinear. 

Note one more important  property. The law (4.12) guarantees the equality of the mean dissipative 
stresses to zero 

Td"E= g (a~ + a~ + a~) = 0. (4.15) 

Prove this. The double convolution of relation (4.10) with a unit tensor E 

pc~, 
Td.-E = j l jv 'E  

leads to the conclusion that  the equality of the expression ~ijiji"E to zero will suffice for obtaining the 
necessary result. To determine the values of the expression ~Ljiji'-E, we perform double convolution of the 
material behavior taw (4.12) with a unit tensor. The law studied [with allowance for (4.5)] takes the form 

0 
~ (~ijiji..S) = -~(~ j i j i - -E) .  
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This equation has a trivial solution that satisfies the initial zero data (which characterize the initial unloaded 
state of the medium): 

~,jiji"E = 0. (4.16) 

Hence, condition (4.15) is valid. 
Relation (4.14) is the law of development of plastic deformation and can be rewritten as 

3dint ( T - 1  ) 
O ~ - D A . O a  T = 2aint 5 ( T " E ) E  . (4.17) 

Here 
1 

tTin t = ~ r -- O'2) 2 + (G2 --O'3) 2 -~- ((71 -- O'3) 2, 

where ~ri are the eigenvalues of tensor T, and 

~/(d,  - d2) 2 + (d~ - d3) 2 + (d,  - d3) 2, dint = -~- 

where di are the eigenvalues of tensor DA. 
We emphasize that law (4.14) can be used when the field of values of the parameter v at space points 

is known. In a physical sense, the quantity v characterizes the degree of development of plastic flow, i.e., it 
shows to what extent the conditions of compatibility of plastic strains allow plastic flow to develop. In other 
words, it shows the contribution of actual plastic strain rates developed at a given point of the medium to 
the maximum rates at a given load (observed on homogeneous samples under similar conditions). 

The parameter v can be calculated from the equality v = ( 3 / 2 ) ( 1 / r l A ) ( d i n t / a i n t ) .  However, to this end, 
it is necessary to determine the field of the intensity distribution of plastic flow velocities dint and the field 
of stress intensity aint, using equality (4.17). However, equality (4.17) allows one to evaluate the intensity 
field of plastic flow velocities dint only with accuracy to a constant cofactor. The latter should be uniquely 
determined from the requirement that the maximum value of the parameter u must be equal to unity. 

We now must verify the validity of inequality (4.6). It is worth noting that the symmetry of the complete 
stress tensor T and the skew-symmetry of the tensor WD make the result of their double convolution vanish: 

T-.WD = 0. (4.18) 

Using expressions (4.1), (4.12), (4.7)-(4.14), and (4.16), (4.18), we transform inequality (4.6): 

T " ( D R -  O~" DA" o r ) -  a~jiji'-(r/~(ijiji + 3 ( D " E ) E )  

1 Q-"R 
- T - - D R -  ~ r / q v 0 -  

( ) = --T..ur/A T - g (T . .EIE - rlr  ~{~/- 0 r/q ~7 O- Q ? ' -  ( Q ~ ) - '  �9 ~7 0 ~< 0. 
,7 

We finally write this inequality as 

( ) , Ur/A T . - T -  (T..E) 2 +r/~cP~{~i+ r / q ~ 0 . Q R  1 . ( Q ~ ) - I  ~ 0 / > 0 .  
r/ 0 

Obviously, the second and third terms in the expression cannot take negative values. The same is true for the 
first term and is proved by the transform 

1 1 
T - . T -  :1 (T.-E)2 = O' iO"  i - -  ~ (O"1-[-O"2-{-O"3) 2 : ~( (O ' l -  O'2)2 + (O'2- O'3)2-4-(O't- ty3)2)~ 0. (4.19) 

To model the processes occurring in the medium, it is necessary to formulate a heat conduction 
equation. To derive it, we substitute, using (3.5), the expression of mass density e via the characteristics 
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f ,  0, and s into the law of energy conservation (3.3): 

p - ~ + s ~ - ~ + 0 ~  - T . - D R - T . . W D + ( Q ~ ) - ' . - ~ T q = 0 .  (4.20) 

The value of the time derivative of f in equality (4.20) should be determined from the formulas given bclow. 
The first of these is obtained from relations (2.12), (4.1), (4.9), and (4.14): 

( ' ) Of O)~j _ (a~hlhi).-(DR - O~.  DA" O t)  = T~--DR - Te"vrlA T - ~ (T. .E)E 
P O~j Ot 

The second formula is derived from equalities (4.2), (4.4), (4.10), and (4.12)-(4.15): 

Of O~k �9 (9 ( 1 ) 
P O~k Ot - (a~ij i) . .r /-~ (~kJkJk) = -Ta-" r/~(~/jiji) - DR + 0 0 .  DA- O t + 5 (D. .E)E 

1 
= -Td..(r/,(~ijiji)-DR+l/r/A(T- 5(T..E)E)). 

Finally, substituting the above formulas and relations (4.7) and (4.18) into expression (4.20), we obtain 
�9 

pO ~-~ - T--vr/A T - (T--E)E - Td..r/~(kjkjk + (Q~)- I . .  V q = 0. 

Taking into account equalities (4.2), (4.10), and (4.19), we finally formulate Eq. (4.20) as the law 

Os * 1 
pO~'~ ---- 71"~q-Tr A -- ( Q ~ ) - I . - V q ,  r~ = r/~Cp ~i~i, 71" A ----- Vr/A((0.1 -- 0"2)2+(0"2 -- 0"3)2+(0"1 -- 0"3)2), (4.21) 

r/ 5 
where 7r~ is the heat release due to dissipative losses in relaxation processes, and rA is the heat release due 
to the plastic deformation of the material. This relation is the heat conduction equation. The entropy of the 
system changes because of heat exchange between the medium and neighboring regions, the heat release during 
relaxation transitions from one medium's state to another, and in the development of plastic deformations. 

5. Conc lu s ions .  Within the framework of the above model, the processes occurring in the material are 
described by continuity equations (3.1), by equations of motion (3.2), relaxation of the mechanical properties 
of the medium (4.12), and development of plastic deformations (4.14), and by heat-conduction equation (4.21). 

The material 's properties are defined by the scalar functions f ,  r/A, r/~, r/q, and 7?. These functions must 
be determined experimentally. In this case, the quantities r/A, r/~, r/q, and 7? can be functions of the state 
parameters of the material 0, ~ l ,  A2, )t3, El ,  ~2, and ~3 and of their t ime derivatives. It is important,  however, 
that  the inequalities r/A >/ 0, r/~ ~ 0, r/q >/ 0, and r /> 0 be satisfied. The parameter v must obey the constraint 
0 ~ < v ~ l .  
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